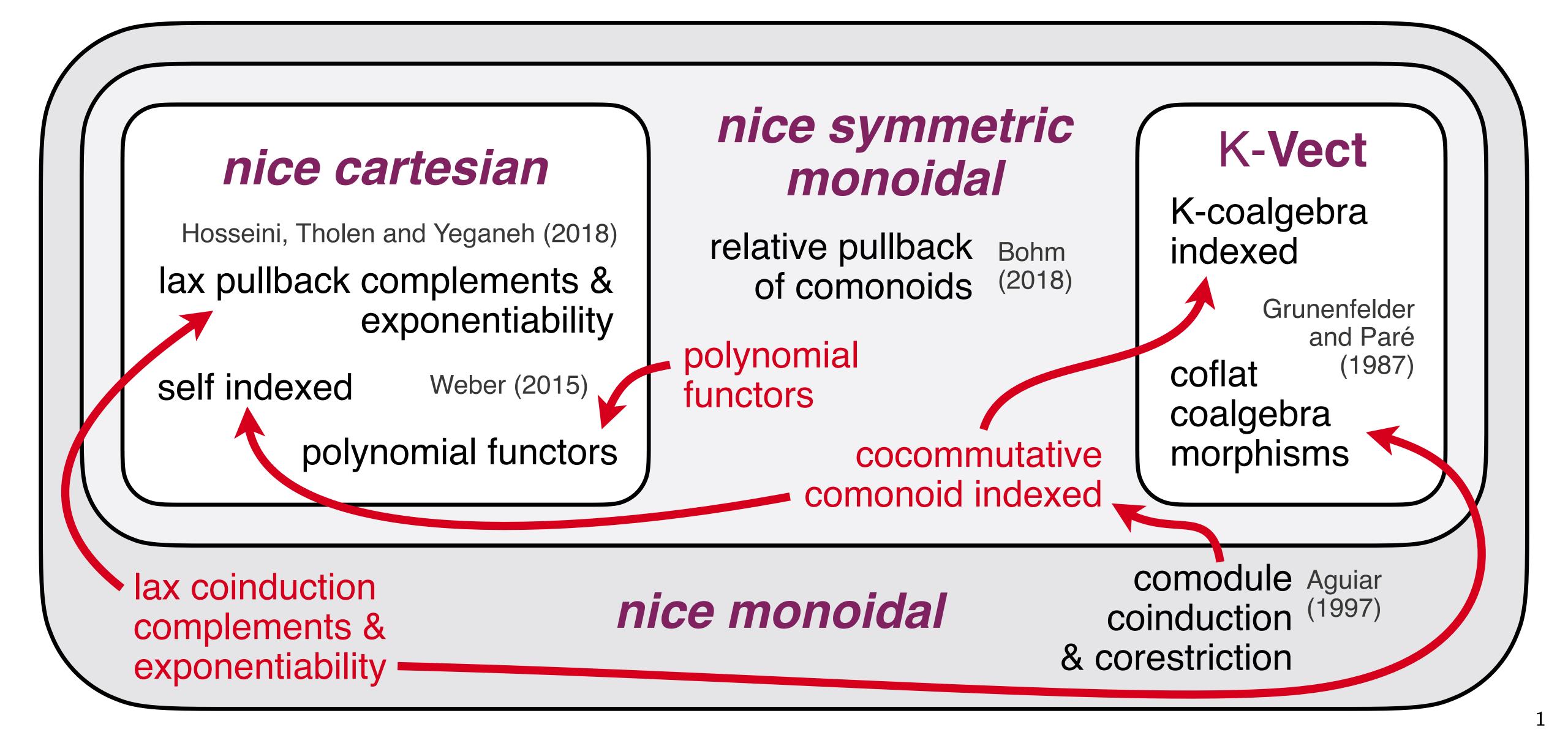
Polynomial functors and families parametrised by comonoids

Matthew Di Meglio

Motivation



1 Comonoid indexing generalises self indexing

2 Comodule diagrams

Opposite a state of the stat

cartesian monoidal category C \rightsquigarrow symmetric monoidal category $\mathcal V$

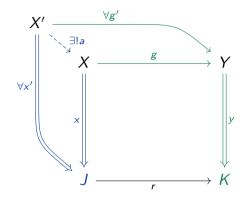
- $\begin{array}{ccc} \mathbf{C} & \leadsto & \mathbf{CComon}_{\mathcal{V}} \\ \mathbf{C}/J & \leadsto & \mathbf{Comod}_{\mathcal{V}}J \end{array}$
- composition \rightsquigarrow corestriction
- ${\boldsymbol{\mathsf{C}}}$ has pullbacks $\quad \leadsto \quad \mathcal{V}$ has coreflexive equalisers, and
 - \otimes preserves them in each variable
 - pullback \rightsquigarrow coinduction
- lax pullback complement (distributivity pullback)
- lax pullback complement \rightsquigarrow lax coinduction complement

Comonoid indexing generalises self indexing

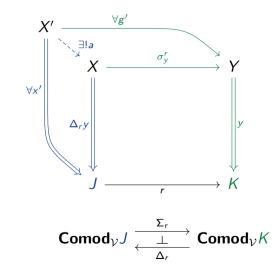
2 Comodule diagrams

Opposite a state of the stat

Comodule diagrams example

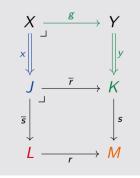


Comodule diagrams example



Proposition

The pasting is a generalised pullback square



Comonoid indexing generalises self indexing

2 Comodule diagrams

3 Polynomial functors in nice monoidal categories

Let **C** be a category with pullbacks.

A *polynomial* in **C** is a diagram in **C** of shape

$$J \xleftarrow{s} A \xrightarrow{r} B \xrightarrow{t} K$$

where r is exponentiable in **C**.

The associated *polynomial functor* is the composite functor

$$\mathbf{C}/J \xrightarrow{\Delta_s} \mathbf{C}/A \xrightarrow{\Pi_r} \mathbf{C}/B \xrightarrow{\Sigma_t} \mathbf{C}/K$$

In **Set**, under the isomorphisms $\mathbf{Set}/J \cong \prod_J \mathbf{Set}$,

$$\Sigma_t \Pi_r \Delta_s(X_j)_{j \in J} = \left(\sum_{b \in t^{-1}k} \prod_{a \in r^{-1}b} X_{sa} \right)_{k \in K}$$

Let $\mathcal V$ be a symmetric monoidal category with coreflexive equalisers, such that \otimes preserves them in each variable.

A *polynomial* in \mathcal{V} is a diagram in **CComon**_{\mathcal{V}} of shape

$$J \xleftarrow{s} A \xrightarrow{r} B \xrightarrow{t} K$$

where r is exponentiable in \mathcal{V} .

The associated *polynomial functor* is the composite functor

$$\operatorname{Comod}_{\mathcal{V}}J \xrightarrow{\Delta_s} \operatorname{Comod}_{\mathcal{V}}A \xrightarrow{\Pi_r} \operatorname{Comod}_{\mathcal{V}}B \xrightarrow{\Sigma_t} \operatorname{Comod}_{\mathcal{V}}K$$

- **CComon**_{\mathcal{V}} is a category with pullbacks under the assumptions on \mathcal{V} .
- If U: CComon_V → V has a right adjoint (i.e. V has cofree comonoids) then exponentiability in V implies exponentiability in CComon_V.
- Polynomials in \mathcal{V} compose as polynomials in **CComon**_{\mathcal{V}}.
- If indexed products which exist distribute over indexed sums, then the mapping from polynomials to polynomial functors is functorial.

Conclusion

