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Comonoid indexing generalises self indexing

cartesian monoidal category C  symmetric monoidal category V

C  CComonV

C/J  ComodVJ
composition  corestriction

C has pullbacks  V has coreflexive equalisers, and

¢ preserves them in each variable

pullback  coinduction

lax pullback complement

(distributivity pullback)

 lax coinduction complement

2



Outline

1 Comonoid indexing generalises self indexing

2 Comodule diagrams

3 Polynomial functors in nice monoidal categories



Comodule diagrams example
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Pasting generalised pullback with pullback

Proposition

The pasting is a generalised pullback square
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Polynomial functors in category with pullbacks

Let C be a category with pullbacks.

A polynomial in C is a diagram in C of shape

J A B Ks r t

where r is exponentiable in C.

The associated polynomial functor is the composite functor

C/J C/A C/B C/K�s �r �t

In Set, under the isomorphisms Set/J ≥=
r

J Set,
�t�r�s(Xj)jœJ =

1 ÿ

bœt≠1k

Ÿ

aœr≠1b
Xsa

2

kœK
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Polynomial functors in nice monoidal categories

Let V be a symmetric monoidal category with coreflexive equalisers,

such that ¢ preserves them in each variable.

A polynomial in V is a diagram in CComonV of shape

J A B Ks r t

where r is exponentiable in V .

The associated polynomial functor is the composite functor

ComodVJ ComodVA ComodVB ComodVK�s �r �t
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Composition of polynomials and polynomial functors

• CComonV is a category with pullbacks under the assumptions on V .

• If U : CComonV æ V has a right adjoint (i.e. V has cofree comonoids)

then exponentiability in V implies exponentiability in CComonV .

• Polynomials in V compose as polynomials in CComonV .

• If indexed products which exist distribute over indexed sums, then

the mapping from polynomials to polynomial functors is functorial.
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